Sox2 is required for development of taste bud sensory cells.
نویسندگان
چکیده
Sox2 is expressed in basal epithelial cells of the tongue, with high levels in taste bud placodes, fungiform papillae, and mature taste cells, and low levels in filiform papillae. High Sox2 expression appears to lie downstream from canonical Wnt signaling. In hypomorphic Sox2(EGFP/LP) embryos, placodes form but no mature taste buds develop. In contrast, transgenic overexpression of Sox2 in the basal cells inhibits differentiation of filiform keratinocytes. Together, our loss-of-function and gain-of-function studies suggest that Sox2 functions in a dose-dependent manner to regulate the differentiation of endodermal progenitor cells of the tongue into taste bud sensory cells versus keratinocytes.
منابع مشابه
Diversity in cell motility reveals the dynamic nature of the formation of zebrafish taste sensory organs.
Taste buds are sensory organs in jawed vertebrates, composed of distinct cell types that detect and transduce specific taste qualities. Taste bud cells differentiate from oropharyngeal epithelial progenitors, which are localized mainly in proximity to the forming organs. Despite recent progress in elucidating the molecular interactions required for taste bud cell development and function, the c...
متن کاملFgf signaling controls pharyngeal taste bud formation through miR-200 and Delta-Notch activity.
Taste buds, the taste sensory organs, are conserved in vertebrates and composed of distinct cell types, including taste receptor, basal/presynaptic and support cells. Here, we characterize zebrafish taste bud development and show that compromised Fgf signaling in the larva results in taste bud reduction and disorganization. We determine that Fgf activity is required within pharyngeal endoderm f...
متن کاملTaste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds.
Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is r...
متن کاملTaste Bud-Derived BDNF Is Required to Maintain Normal Amounts of Innervation to Adult Taste Buds1,2,3
Gustatory neurons transmit chemical information from taste receptor cells, which reside in taste buds in the oral cavity, to the brain. As adult taste receptor cells are renewed at a constant rate, nerve fibers must reconnect with new taste receptor cells as they arise. Therefore, the maintenance of gustatory innervation to the taste bud is an active process. Understanding how this process is r...
متن کاملNeuron/target matching between chorda tympani neurons and taste buds during postnatal rat development.
During postnatal development, a relationship is established between the size of individual taste buds and number of innervating neurons. To determine whether rearrangement of neurons that innervate taste buds establishes this relationship, we labeled single taste buds at postnatal day 10 (P10) and again at either P15, P20, or P40 with retrograde fluorescent neuronal tracers. The number of singl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genes & development
دوره 20 19 شماره
صفحات -
تاریخ انتشار 2006